Volume 234, number 1,2 PHYSICS LETTERS B 4 January 1990

QUANTIZATION OF THE KALUZA-KLEIN MONOPOLE SYSTEM BY PATH INTEGRATION
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The Kaluza-Kiein monopole system is quantized by path integration, and the exact energy spectrum is obtained. The radial
Green function and radial wave functions are also found in closed form.

The Kaluza-Klein monopole of Gross and Perry [ 1] and of Sorkin [2] is a static solution of the classical field
equation R,z=0 in five-dimensional Kaluza—Klein theory, which is identical with the Taub-NUT instanton
solution,

ds?=V-1[dr2+r? d6*+r?sin?0@ dp?] + V{dm dy+A4,de]?, (1)
where (r,0,p) are polar coordinates, x>=4miy, and
V={l+4m/r]~}, A,=4m(l—cosb). (2)

The Kaluza-Klein monopole system, a test particle bound in the Taub-NUT space (1), has been quantized via
Schrdinger’s equations [3,4] and also by the supersymmetric WKB calculation [4] to find the exact energy
spectrum. In this paper, we present a path integral quantization of the Kaluza-Klein monopole system, includ-
ing the exact results for the energy spectrum and the radial wave functions.

In quantizing the Kaluza-Klein monopole system, Cordani, Fehér and Horvarthy [4] have derived the three-
dimensional hamiltonian for a test particle of mass M=1 in the static field (1),

V M

A | 1 a2
H=op*+ 554%, (3)
where g is the conserved charge,
g=4mV[y+(1—cos 8)¢] . (4)

The angular part can be separated on the basis of monopole harmonics, so that the effective radial hamiltonian
may be given by

_ 2
___V_p$+ I(I+1)—(4mq)

Mqg?
= V+
2M

2Mr? 2V (%)

We utilize this result and write the corresponding lagrangian:
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l{({+1)—(4mq)? _qu (6)
2Mr? 2V

L=iMV 72—

for which we attempt to carry out path integral quantization.

Due to the nontrivial structure of the background space, Feynman’s path integral for the propagator cannot
readily be computed. However, various path integral techniques newly developed have enabled us to find path
integral solutions for systems such as the Kepler problem on uniformly curved spaces [5,6]. We shall apply
similar techniques to the present problem. Instead of the propagator, we deal with the path integral for the
promotor

iW{r(t)])

P(r,r:7)= J@[r(t)}exp( P (7)

where W=S+ Etis Hamilton’s characteristic function. From this promotor, the energy dependent Green func-
tion, G(r", r'; E)=(r" | (E—~H)~'|r' ), can be obtained by integration:

G(r",r’.'E)=;%J.P(r",r';r) dz. (8)
If we expand the Green function in terms of monopole harmonics as

G PiE)= S G\ F3E) Y Yumi(60") Yinin(659') 9)

I=|q/%| p=l

then the radial Green function for the system (6) is given by

G,(r",r';E):%J‘P.-(f’",I";T)dT’ (10)
! o

where
1 172 5 i dm

P " ra — —— V ’ V " — .

(Pt = o TV V()] lim Jl;IlexD( ),D.(zmhr,) It dn (1)

with

M I(H-1)1"'12—(41'1ru;1)2 » Mq?
Wl'=_ -1 32 T,
=7 Vil(Ar) My Vit,— 27, 1,+E71;. (12)

In the above, we have used the notations: t” =ty, t' =1, r;=r(;}, Aty=ri—r,_ |, T=t=1;_1, T= 21, T, FF =ry_y,

and V?=[(1+4m/ r;)(1+4m/r,_;)]~'. As in refs. [7,8], we have chosen in evaluating the short time action

(12) the geometric mean value prescription which corresponds to a symmetric operator ordering, f(r)p3f(r).
Now we apply the local space-time transformation:

—1i
4 4
2= a,-=r,-[4p,-p,-_l\/(1+—"—"-)(1+ 2’"” , (13)
H Pi—i
with the global scaling :
dm 4dm
t=40p"p’ (1+ )(1+ ) (14)
ve \/ p” p*

where 6=3 [, ;. Thislocal transformation takes the promotor (11) into another promotor which is equivalent
to the former when integrated over t.
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Expansion of the kinetic term in (12) up to O(Ap?) yields

(APJ)") ., _3h%;
4pp-1) 20; (40)"= 8Mpp;— '

Sz

7y 2 ((app+

The notation = implies equivalence in the path integral via the McLaughlin-Schulman procedure. The measure
also changes as

12, -1/4 N l/2 -1
f(eam) TSm0 38) 0 38)] ) T

2?[1&1'1 J=1 i P P ZﬂlflO} j=1

Thus the path integral (11) can be written as

—-3/4 . _ 2 -
P, ) =1 (p"p')-”z[(u 2—";‘-)( +%@)] exp(”ém"(‘i M ))Ki(p",p';a), (15)
where
Fara )_.I_l J.ﬁ(M)Uzc (IS(U’)]'Idp
A p ,0 g)= Ly 2ﬂ:iﬁ0} J

2+1)2—L

S(a)——(Ap,)z Gt g+ (4E=20°M)ppy-10). (16)
p.l i1

Setting

1,2
i=2t+y, wi=- SESHD) g (g pg?), (17)

we see that the path integral (16) is identical in form with the radial path integral of a harmonic oscillator of
angular momentum A. It has been evaluated for the radial path integration of the hydrogen atom [8], the result
being

Ki(p".p0)=(p'p")~ ”2%"050(0)0) exp(lM (p’2+p"2)cot(wa))lm/z(%ﬂp’ﬂ”csr:(wa)) (18)

where I,(z) is the modified Bessel function. Substituting this into (15) and integrating the promotor with the
help of the integral formula

jcxp(-~2ap) exp[—3(x+y) coth ] I, [ (xp)'/? csch a] csch @ do
4]

_( T(p+v+1)

(xy)1/21"(2v+l))M—p,P(x)W—p,v(y) > (19)

we find the radial Green function in closed form,

) M 4m am\17"* L [(pt+i+1)
G(r',r;E)==— [(l+—-~)(1+7)j| (2ikr"r') ‘~—-—-——--————F(21+2)

XM _pe172( =21k YW _p 41 2(=21kr" ) , ‘ (20)
where k= Mw/2ih, p= —iMe*/h%k, and M, g(x) and W, z(x) are the Whittaker functions. From the poles of
(20) at p= —n,—I—1 we deduce the energy spectrum

43



Volume 234, number 1,2 PHYSICS LETTERS B 4 January 1950

ﬁl

En= (4m)*M

(n*=s)12[tn~(n?—s)"?], n=n+i+1,n,=0,1,2,.., 15 (21)

where s=4maMgq/#. This coincides with the result obtained by Gibbons and Manton [3] and by Gordani, Fehér
and Horvdthy [4]. Note that the poles arise only for positive w? and e? from which follow the conditions
E<}q’M and m<0. The upper sign of (21) corresponds to positive energy eigenvalues, whereas the lower sign
leads 1o £, <0. A more detailed discussion of the spectrum (21) can be found in ref. [3].

The residues of (20) determine the normalized wave functions in terms of Laguerre polynomials:

am\ ™ 4n,! Y2 ey 2r
_ am r: “r _ 2+ | <L
R,,,(r)_(l + r ) (a3n“F(n,+21+2)) (an) exp(—r/an)Ly, (an) ’ (22)

where a=#2%(g*M*—2EM)'/*/n. These functions are normalized in L? space with the measure (1+4m/
r)'2dr.

In this article, we have started with the lagrangian corresponding to the hamiltonian obtained by Cordani,
Fehér and Horvithy to find in a short cut an exact energy spectrum and the radial wave functions in closed form.
Although the conserved charge ¢ has been fixed to a single constant value, the charge quantization can also be
accomodated within the path integral scheme. This and an alternative account of the path integral treatment of
the Kaluza-Klein monopole system based on the Kustaanheimo-Stiefel coordinates will be given elsewhere.

After completion of this manuscript, the present authors have become aware of Bernido’s article [9] where
our alternative approach [ 1G] is utilized.

One of the authors (G.J.) gratefully acknowledges the support by the Jubildumsstiftung der Universitit Wiirz-
burg for a research visit to the United States.
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